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Abstract

The interactions of nabumetone (NAB) with α-cyclodextrin (α-CD) and γ -cyclodextrin (γ -CD) were studied in aqueous
solution by means of phase-solubility analysis. Solid dispersions of NAB with α-cyclodextrin (α-CD), β-cyclodextrin (β-
CD), methylβ- (Mβ-CD), hydroxypropylβ-cyclodextrin (HPβ-CD) were prepared by coevaporation and kneading and also
by coprecipitation in the case of γ -CD. X-ray diffractometry, thermal analysis and infrared spectroscopy (FTIR) were used
to study the possibility of complexation of the drug with the different cyclodextrins. Solid dispersions of nabumetone with
γ -CD showed a remarkable improvement in the dissolution rate of nabumetone.

Introduction

Nabumetone ((4,6-methoxy-2-naphthyl)-butan-2-one)
(NAB) (Scheme 1) is a non-acidic non-steroidal anti-
inflammatory prodrug. This substance is metabolised to
an active metabolite (6-methoxy-2-naphthylacetic acid (6-
MNA)) which is a relatively selective cyclooxygenase-2
inhibitor and has anti-inflammatory and analgesic properties.
NAB is well tolerated in patients with osteoarthritis and
rheumatic diseases. This drug is poorly soluble in water.

α-, β- and γ -cyclodextrins are torus-like macrorings
built up from six, seven and eight units of glucopyranose,
respectively. β-CD is the most rigid cyclodextrin structure
and shows a lower solubility in water. Randomly methyl-
ated (Mβ-CD) and hydroxypropylated (HPβ-CD) derivat-
ives show higher solubility so their amorphous character.

The apparent stability constants of nabumetone with β-
, Mβ- and HPβ-cyclodextrins in solution were calculated
by us from spectrofluorimetric measurements in a previ-
ous work [1]. In this study, the interactions in solution of
nabumetone with α- and γ -CD have been determined by
means of phase solubility analysis and the possible com-
plexes of nabumetone with the different cyclodextrins were
prepared by coevaporated and kneading methods and also by
coprecipitation in the case of γ -CD.
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Scheme 1. Chemical structure of nabumetone.

Experimental

Material

Nabumetone (NAB) was obtained from SIGMA, β-CD from
LAISA (Levantina Agrícola Industrial, S.A., Barcelona,
Spain), Mβ-CD and HPβ-CD from RBI (Research Bio-
chemicals International, Natick, USA) and α- and γ -CD
from Wacker Chemie GmbH. All materials and solvents
were of analytical reagent grade.

Methods

Solubility studies

Solubility measurements in unbuffered aqueous solution (pH
≈ 6) in the absence and in the presence of α-CD (0.12×10−2

to 1.5 × 10−2 M) and γ -CD (0.03 × 10−2 to 1.5 × 10−2 M)
were carried out by adding to the solutions excess amounts
of NAB. The solutions were shaken at 25 ◦C for 24 h. After
equilibrium, the solutions were filtered and the concentra-
tions of NAB were determined spectrophotometrically at
228 nm. The presence of ligands did not interfere in the ab-
sorption measurements. The apparent stability constant and
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Figure 1. Phase solubility diagrams of nabumetone (NAB) with α-C (A) and γ -CD (B) in aqueous solution at 25 ◦C.

the stoichiometry were calculated from the phase solubility
diagrams [2].

Preparation of solid dispersions

Solid dispersions of the different cyclodextrins and NAB
were prepared in 1:1 molar ratio. The kneaded product (KN)
was obtained by wetting the cyclodextrin with a minimum
volume of a 50% V/V mixture of ethanol and water to obtain
a paste with NAB which was subsequently dried at 60 ◦C.
The coevaporated product (CE) were prepared by mixing
hydroalcoholic solutions (ethanol/water 50% V/V) of NAB
and the different cyclodextrins. The resulting mixture was
stirred and the solvent was eliminated under vacuum in a ro-
tatory evaporator at 80 ◦C and the system was dried at 70 ◦C.
The coprecipitated product (CP) in the case of NAB:γ -CD
dispersion was obtained from the point c of the Bs type
solubility diagram (Figure 1B).

The solid dispersions have been studied by comparison
with the corresponding physical mixtures (PM).

Characterisation of solid dispersions

X-ray diffraction. X-ray diffraction patterns were recorded
using a Brucker D8 Advance diffractometer, according to
the diffraction powder method, with a CuKα1 radiation, 40
kV voltage, 30 mA current, 0.02 increment and 1 sec/step
and sweep 2 to 50◦ 2θ .

Thermal analysis (TGA and DTA). The thermal analysis
were performed with a simultaneous SDTA/TGA 851e Met-
tler Toledo thermal analyzer. The thermal behaviour was
studied by heating about 5 mg of the sample at a scan rate
of 10 ◦C/min in a pierced aluminia crucible under static air
atmosphere. The measurements were made in triplicate.

FT-IR. Infrared spectra were obtained with a Nicolet Mod.
Avatar 360 infrared spectrophotometer using the KBr pellet
technique.

Dissolution studies
Dissolution rates were determined according to the disc
method described by Wood et al. [3]. For this purpose, the
samples were compressed by a hydraulic press for KBr discs
for infrared spectroscopy. The dissolution tests were per-
formed according to the USP 25 NF 20 [4] paddle method
with a Sotax AT 7 Smart dissolution testing apparatus. Every
experiment was conducted under the following conditions:
900 mL of aqueous solution as a dissolution medium main-
tained at 37 ± 0.1 ◦C and 100 rpm stirrer. The samples were
filtered through Whatman glass microfibre filters and the
NAB concentration was spectrophotometrically determined
at 228 nm, using an Agilent 8453 spectrophotometer. Dissol-
ution runs for all samples were performed at least six times
and the mean values of the dissolved drug were reported.

Results and discussion

Solubility studies

An Ap type [2] equilibrium phase solubility diagram was
displayed with α-CD (Figure 1A). The non-linear plot with
concave-upward curvature means that at least one complex
is present having a stoichiometry > 1 with respect to the
ligand. In this case the non-linear fit of the data allows to cal-
culate the apparent constants (K1:1 and K1:2) for complexes
of stoichiometry 1:1 and 1:2 by the following equation
(Equation (1))

St = s0 + s0K11[α-CD] + s0K11K12[α−CD]2. (1)

The values of K1:1= 77.3 ± 6.8 M−1 and K1:2 = 57.7 ± 6.0
M−2 obtained for the complexes suggest a weak interaction
between NAB and α-CD because naphthalene is too bulky
for α-CD cavity [5].

In the system with γ -CD the pattern was of Bs type
because of precipitation of an insoluble complex at high
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Figure 2. X-ray diffraction patterns of single components and equimolar physical mixtures (PM), coevaporated (CE), kneading products(KN) and
coprecipitated (CP) products.

Figure 3. DTA thermograms of nabumetone (NAB), α-CD, β-CD, Mβ-CD, HPβ-CD and γ -C and their respective physical Mixtures (PM), coevaporated
(CE), kneaded (KN) and coprecipitated (CP) systems.
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concentrations of the carrier (Figure 1B). Calculation of the
stoichiometry was made from the plateau data (Equation (2))

molar ratio = [NAB]t − [NAB]a
[γ − CD]b − [γ − C]a , (2)

where [NAB]t is the total concentration of NAB in the solu-
tion and [NAB]a , [γ -CD]a and [γ -CD]b the concentrations
of NAB and γ -CD in points a and b respectively. The cal-
culated value was 1:1. The apparent 1:1 stability constant,
calculated from the straight portion of the diagram (Figure
1B), was K1:1 = 219 ± 1 M−1 (Equation (3))

St = s0 + K11s0[γ -CD]t
1 + K11s0

. (3)

The low stability constant given by the NAB:γ -CD complex
suggests weak interactions which would result in premature
release of the drug from the γ -CD cavity [6].

Characterisation of solid dispersion

X-ray diffraction
The diffraction patterns of the physical mixture and kneaded
product of NAB with α-CD correspond to a superimposition
of both components (Figure 2). The coevaporated pattern
profile is different to that of the physical mixture, but this
fact can be attributed to a change in α-CD crystallinity
obtained when the solvent is evaporated.

The diffraction pattern of NAB:β-CD coevaporated sys-
tem shows some significant differences with respect to
physical mixture and kneaded product (Figure 2). The ap-
pearance of a new reflection at 11.5◦2θ and the decrease of
intensity of other peaks suggest changes of crystallinity due
to a partial inclusion of NAB in β-CD cavity.

The X-ray diffractograms of NAB:HPβ-CD showed
peaks corresponding to the drug and the carrier, indicating
that NAB retained its crystalline nature in these systems
(Figure 2).

The NAB:Mβ-CD dispersion prepared by kneading
presents a similar diffraction pattern as the physical mixture.
The coevaporated product showed new peaks with high in-
tensity at 9.13; 11.5 and 17.7◦2θ indicating the formation of
a crystalline complex (Figure 2).

The NAB:γ -CD coevaporated and coprecipitated
products showed similar diffraction patterns which differ
significantly with that of the physical mixture (Figure 2).
The presence of new peaks with high intensity at 7.5; 11.9;
14.1; 14.9; 15.8; 16.6; 21.7 and 23.6◦2θ in the coprecipitated
and coevaporated products and with reduced intensity in the
kneaded dispersion, suggests the formation of a new solid
phase with high crystallinity.

Thermal analysis
The DTA of NAB showed two sharp endotherms (Figure
3), the first corresponding to the melting point, centered at
83–84 ◦C and the second associated to the descomposition
process at 377–378 ◦C with a total loss of mass (>99%)
detected by TGA. The melting endotherm and also the super-
imposition of descomposition endotherms corresponding to

Figure 4. FTIR spectra of single components and equimolar physical
mixtures (PM) and coevaporated (CE), kneaded (KN) and coprecipitated
products with γ -CD (1: NAB, 6: γ -CD, 5: PH, 2: CE, 4: KN, 3: CP).

NAB and CD were observed in NAB:α-CD and NAB:HPβ-
CD systems (Figure 3). A complete disappearance of the
melting endotherm of NAB was seen in the coevaporated
with Mβ- and γ -CD and also in the coprecipitated and
kneaded dispersions with γ -CD (Figure 3). The results are
consistent with complex formation. The melting endotherm
of NAB is reduced in the dispersion prepared by coevap-
oration method with β-CD, suggesting the possibility of a
partial inclusion of NAB in β-CD cavity.

FTIR

FTIR was suitable for detection of the interaction with γ -CD
(Figure 4). The characteristic ketonic carbonyl stretching
band of the pure drug (1705 cm−1) appeared unchanged in
the physical mixture and broaded and shifted to a higher
frequency (1710 cm−1) in coevaporated, coprecipitated and
kneaded products. This effect could be attributed to the
breakdown of the intermolecular hydrogen bonds of the
crystals [7] associated to the inclusion of the drug monomer
into the hydrophobic cavity of the carrier [8].

Dissolution studies

Dissolution profiles of NAB:γ -CD coevaporated (CE) and
physical mixture (PM) products in distilled water are showed
in Figure 5. Due to the low solubility of NAB, it exhibited a
slow rate of dissolution with only 3% released in two hours.
The dissolution rate of the physical mixture was consider-
ably greater than that of the pure drug (about 40% of NAB
dissolved in 120 min) probably due to the improvement in
drug wettability. The CE showed better dissolution proper-
ties. After 10 min drug released was approximately 80%.
This remarkable improvement in drug dissolution could be
attributable to an increase in solubility and wettability of
NAB in the solid dispersion due to the complexation.
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Figure 5. Dissolution profile of coevaporated product (�) and physical mixture (�) of NAB (�) with γ -CD in water.
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